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Correlations between resonances in a statistical scattering model
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The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels
is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of
only a few channelsK,10. The coupling to the continuum induces two main effects, due to which the
distorted system differs from a chaotic system~described by a Gaussian ensemble!: ~i! The width distribution
for large coupling becomes broader than the correspondingxK

2 distribution in the Gaussian orthogonal en-
semble case.~ii ! Due to the coupling to the continuum, correlations are induced not only between the positions
of the resonances but also between positions and widths. These correlations remain even in the strong coupling
limit. In order to explain these results, we relate the width of a trapped resonance state to the distance between
its neighboring levels and derive an asymptotic expression for the width distribution for the one channel case.
@S1063-651X~97!08308-6#

PACS number~s!: 05.30.Ch, 05.40.1j, 03.65.Nk
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I. INTRODUCTION

Resonances are states of an open quantum mecha
system, in which the internal dynamics of the underlyi
closed system is disturbed by the coupling to the decay ch
nels. For the small coupling strength the widths of the re
nances increase with growing coupling, while their positio
remain almost unchanged@1–3#. Therefore the degree o
overlap of neighboring resonances increases. This gives
to interferences and the internal dynamics may suffer d
matic changes. If the coupling strength passes over a cri
value, a segregation of the decay widths occurs. Finally,
large couplings,K rapidly decaying modes andN2K nar-
row resonances result from this interference process@4–6#.
In the following we stick to the statistical approach@7,8#,
which is more appropriate for the case of many resonan
Then the internal dynamics of the system in consideratio
modeled by a matrix ensemble. This may be chosen to
scribe regular and chaotic motion, respectively.

The distortion ofregular motion by coupling a closed
quantum system to the continuum has up to now recei
little attention theoretically@9–11# and experimentally@12–
14#. In contrast to that, such problems draw considera
attention in classical and semiclassical theories~e.g., @15#
and references therein!. It would be desirable to connect th
approaches from both fields. The present work is meant t
a first step along that way.

In @10#, the regular motion is described by a Poisson
orthogonal ensemble~POE!. Its perturbation due to its cou
pling to the continuum of decay channels is investigated a
function of a parametera, which characterizes the couplin
strength. Level repulsion appears at largea where the widths
have already segregated. There, with an increasing num
of channels, the correlations in the positions of the re
nances approach those, characteristic for the Gaussian
thogonal ensemble~GOE!. At the same time the distribution
of widths experiences a considerable broadening in comp
561063-651X/97/56~3!/2481~11!/$10.00
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2 distributed widths in the GOE case. Th

broadening is quasi-independent of the number of chann
A similar effect has been found in the transition-streng
distribution of a closed system@16,17#. There the broadening
~or increase in entropy! is explained by the onset of chao
Note that a broad width distribution implies deviations fro
the exponential decay law@18,19#.

A physical example of a regular system, coupled to
continuum, is investigated in@11,13# on experimental and
theoretical grounds. The regular motion of the microwav
inside a rectangular resonator is disturbed by an attac
antenna, which defines the decay channel. Theory pred
the effective coupling of the antenna to the resonator to
crease with the frequency. The experimental data was
tained in the regime of strong external coupling, where
resonance widths have already segregated. It should be
sible to apply the results obtained in the present paper to
experimental setup.

In the following we compare the results for a regular sy
tem described by a POE with those of a chaotic system
scribed by a GOE, both coupled in the same way to
continuum. Our interest focuses on the width distribution a
the correlations induced by the coupling of the system to
continuum of decay channels.

In Sec. II, we describe the statistical model used in o
investigations, as well as some technicalities, concerning
numerical studies performed. A redistribution of the spect
scopic properties takes place in the system if its coupling
the continuum of decay channels is sufficiently strong. W
sketch this mechanism~trapping effect! and give the formula
for the mean width of the long-lived resonances in Sec.
The distribution of the widths most characteristic of the tra
ping effect is considered in Sec. IV. In Sec. V, we pres
our results for the correlations in the positions of the re
nances while correlations between widths and positions
discussed in Sec. VI. Some conclusions are drawn in S
VII.
2481 © 1997 The American Physical Society
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II. MODEL

A. Projection formalism

Our analysis proceeds from the statistical model@3,5#. By
using the projection operator technique@3# we coupleN
bound states (uF i&, i 51, . . . ,N) to K common decay chan
nels (uxc(E)&, c51, . . . ,K) via the two body residual inter
actionV. We are mainly interested in the bound state par
the system and its perturbations by the environment of de
channels. To this end, we investigate the statistical prope
of the system as a function of the coupling strength to
channels.

The total Hamiltonian of the whole quantum mechani
system consists of three different parts: the HamiltonianH
describing the closed system of bound states, a term des
ing the K continua, and a third term which specifies t
coupling between the two subspaces:

H tot5 (
i , j 51

N

uF i&Hi j ^F j u1 (
c51

K E dEuxc~E!&E^xc~E!u

1 (
c51

K

(
i 51

N E dE@ uF i&V i
c~E!^xc~E!u1H.c.#. ~1!

Here theV i
c(E) are the coupling matrix elements betwe

the bound statesuF i& and the scattering statesuxc(E)&. They
can be understood as the components of anN-dimensional
vectorV c. Its norm is a measure of the coupling strength
the channelc. Direct reactions are neglected. We consid
scattering systems with time reversal invariance, so we
restrict ourselves to real matricesHi j andV i

c(E).
As shown in@3# the S matrix of such a system reads

Sab~E!5dab22p i (
i , j 51

N

V i
a~E!Gi j ~E!V j

b~E!, ~2!

whereG is the propagator in the perturbed systemH1Wext,

G5@E2H2Wext#21, ~3!

and the generally complex operatorWext describes the per
turbations from outside,

Wi j
ext5 (

c51

K E dE8
V i

c~E8!V j
c~E8!

E1 i«2E8
. ~4!

According to Eq.~2!, the pole structure of theS matrix is
given by the eigenvalues of the operatorH1Wext. We sup-
pose, that the quantitiesV i

c(E8) are~almost! independent of
the excitation energy, which is justified if one considers
finite energy region sufficiently far from the reaction thres
olds. With this assumption Eq.~4! simplifies

Wi j
ext52

i

2
h(

c51

K

VicVjc , ~5!

where we replacedV i
c by A2p/hVic , Vic being aN3K

matrix with on the average unit column vectors, andh being
the total coupling strength per channel. Then theS matrix
takes the form
f
ay
es
e

l

ib-

r
n

a
-

S~E!512 ihV†@E2Heff#
21V. ~6!

Its complex poles are given by the eigenvaluesẼ n of the
non-Hermitian Hamiltonian

Heff5H2
i

2
hVV†, ~7!

with

Ẽ n5En2
i

2
Gn . ~8!

Under the influence of the external coupling, the eige
states of the Hermitian matrixH are turning into resonance
with a finite lifetime. In the case of nonoverlapping res
nances, the real partEn and the imaginary partGn in Eq. ~8!,
give the position and the total decay width of the resonan
We will stick to these terms in all cases, remembering
definition as poles of theS matrix.

B. Scattering ensemble

Following @5# we representHeff in the eigenbasis of its
Hermitian partH. Demanding orthogonal invariance of th
scattering ensemble, the matrix ensemble is character
solely by the eigenvalue distribution ofH, and the anti-
Hermitian part2 ih/2 VV† is independent on the specifi
choice of the ensemble. In all casesV consists ofK random
column vectors. For largeN this implies the elements ofV
being independent random Gaussian variables with

^Via&50, ^Via
2 &5

1

N
. ~9!

It follows that the matrix elements of the anti-Hermitian pa
^(VV†) i j

2 & are of the orderN22.
The pole distribution for theHeff ensemble may be ex

pressed by@5#

P~$Ej ,G j%!5CE dN$«k%d
NK$Vla%

3)
j

dS detFHeff2Ej1
i

2
G j G D )

m,n
u«m2«nub

3expS 2
N

a2(n
«n

2D expS 2
N

2(
n,a

Vna
2 D . ~10!

C is a normalization constant. The indicesj , k, l , m,
andn are running from 1, . . . ,N, while a numbers the chan
nels 1, . . . ,K. The integration runs over the whole ensemb
parametrized by the eigenvalues$«k% of H and the coeffi-
cients$Vla% of the coupling matrix. By means of thed func-
tions, the positions and widths of the resonances are in
duced as the new variables of the distribution. The first p
in the last line represents the eigenvalue distribution ofH,
wherea is related to the range of the spectrum. The last p
in this line represents the distribution of the matrix eleme
of V.
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56 2483CORRELATIONS BETWEEN RESONANCES IN A . . .
The parameterb.21 controls the degree of level repu
sion. b51 refers to the GOE andb50 to the POE case
b°` describes a completely rigid spectrum~harmonic os-
cillator!, while b,0 refers to a spectrum showing level clu
tering. Note that the casesb52 andb54 do not describe
the unitary and symplectic ensembles, because we alw
work with real matricesV, demandingorthogonal invari-
ance.

In the following we restrict ourselves to the casesb51
~GOE! and b50 ~POE!. For the GOE the level density i
described by Wigner’s semicircle@21#, a being its radius.
For the POE Eq.~10! would produce a Gaussian shaped le
density. But in order to compare the correlations in bo
ensembles we find it more convenient to have equal le
densities. Therefore, we choose the$« j% in the POE case a
distributed according to Wigner’s semicircle law, too.

Unless stated otherwise, all numerical calculations w
done by diagonalizingHeff of dimensionN5300 and with
K53 channels being approximately orthogonal to one
other, due to the centralized distribution of their compone
V is a N3K matrix with random Gaussian coefficients wi
zero mean and variance 1/N. The calculations are performe
for 50 matrices chosen from the GOE or the POE, resp
tively. Then the statistical observables are calculated as
erages over the central part of the spectrum and over
ensemble~the 50 matrices! simultaneously. In the case o
correlation measures (S2 andSg

2 in Sec. V and Sec. VI! the
positions of the resonances are unfolded to the equal m
level spacingd51.

III. RESONANCE TRAPPING

A. Separation of time scales

One of the specific properties of open quantum system
the formation of separate time scales. In the strong coup
regime h@1, K resonances become very broad by ‘‘tra
ping’’ the remainingN2K ones@5,22#. Mathematically the
trapping effect is caused by the fact that the rank of
Hermitian part ofHeff is N while that of the anti-Hermitian
part 2( ih/2)VV† cannot be larger thanK,N due to its
dyadic form ~7!. Thus we have the following picture: A
weak coupling the resonances do not overlap:^G&!D,
whereD is the mean level distance, and the anti-Hermit
part of Heff may be treated by the first order perturbati
theory. Then the widths of the resonances are well appr
mated by the diagonal elements ofVV† and have comparabl
magnitude,

G j5h(
a

Via
2 . ~11!

In the opposite case of strong coupling, the resonances o
lap and the anti-Hermitian part2( ih/2)VV† dominates the
behavior of the decaying system. The appropriate basi
now the eigenbasis ofVV† consisting ofK channel vectors
~the columns ofV) andN2K vectors, spanning the kernel o
VV†. The channel vectors have the common eigenvalueh.
The widths of the remaining states are zero.

In order to get some information about the magnitude
the widths of the trapped resonances it is necessary to
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beyond the simple ansatz sketched above. This is done in
following subsection.

B. Mean width of the trapped resonances

We will calculate the mean width of the trapped res
nances in the strong coupling regime following@5,23#. In
addition to what has been done there, we explicitly show
applicability to the POE case@in fact it may be applied to
any orthogonal invariant ensemble for arbitraryb as defined
in Eq. ~10!#. In order to exploit the orthogonal invariance w
need the first and second moments of the distributions of
matrix elements in a generic~random! basis. For the GOE
they are@21#

^Hi j &50, ^Hi j
2 &5H a2

2N
, i 5 j

a2

4N
, iÞ j .

~12!

For the POE we calculate these moments starting from
level distribution, and applying a random orthogonal tran
formationO

H5Odiag$« j%O
T, ^Oi j &50, ^Oi j

2 &5
1

N
. ~13!

So every element ofH is defined by

Hi j 5(
k

Oik«kOk j . ~14!

Due to the centralized distribution of the$« i% the first mo-
ment ^Hi j & is zero again. Then we calculate the average
the squaresHi j

2 . As the eigenvalues are not correlated, w
get

^Hi j
2 &

55 K (
k

Oik
4 «k

21(
kÞ l

Oik
2 Oil

2«k« l L 5
3

N
^«2&5

3a2

4N
, i 5 j

K (
k

Oik
2 «k

2Ojk
2 L 5

1

N
^«2&5

a2

4N
iÞ j .

~15!

Note that only the diagonal elements differ from the GO
case in their second moment.

In the following we show that the mean width of th
trapped resonances can be calculated from the second
ments of the matrix elementsHi j . To this end we turn to the
channel representation ofHeff . In this basis the channel vec
tors are the firstK canonical vectors and the remainingN2K
vectors constitute a basis for the kernel ofVV†. Then

Heff5H2
i

2
hS dab 0

0 0D . ~16!
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a andb again serve as channel indices, while the greek
tersm andn are used in connection with the long-lived res
nances. We diagonalizeH in the kernel ofVV† by the fol-
lowing orthogonal transformation:

P5S dab 0

0 Pmn
D ,

D5PTHeffP5S Hab2
ih

2
dab *

«K118 0

* �

0 «N8

D . ~17!

Note that$«n8% differ from the eigenvalues$« j% of H. D is
symmetric and therefore the submatrices denoted by *
transposed to each other,

Dmb5 (
k,l 51

N

PkmHklPlb5 (
n5K11

N

PnmHnb . ~18!

ThePnm are only correlated with the matrix elementsHmn as
they are diagonalizing this submatrix, but not withHmb .
Therefore one may average over these quantities inde
dently.

Now we calculate approximate eigenvalues ofD by ap-
plying a Jacobi transformation of dimensionK11 @24#. Such
a transformation is trace invariant~this is important becaus
the total width should be conserved!. So we look for the zero
of the following determinant~for arbitraryK11<m<N):

detS Ẽ m2«m Dm1 , . . . ,DmK

Dm1

A Ẽ m2Hab1
ih

2
dab

DmK

D 50. ~19!

Taking into account only the highest orders inh, we arrive at

Ẽm2«m1(
a

Dma
2

E2Haa1
ih

2

1O ~h22!50. ~20!

We can read the approximate position and width of a trap
resonance from the real and the imaginary part ofẼm . For
h°` we get

Em5«m8 , Gm5
4

h(
a

Dma
2 . ~21!

The final step is the calculation of the ensemble mean ofDma
2

@using Eqs.~12! and ~15!#

^Dma
2 &5K (

n
Pnm

2 Hna
2 L 5^Hna

2 &5
^«2&
N

. ~22!

From that it follows that the mean width for the trapp
resonances is
t-

re

n-

d

^Gm&5
4

hK (
a

Dma
2 L 5

4K

Nh
^«2&5

Ka2

Nh
. ~23!

Note that the diagonal elements ofH do not enter into the
calculation of̂ Gm&, so that Eq.~23! holds for both the GOE
and the POE.

Although the matrix elements of the Hermitian and t
anti-Hermitian part scale differently withN @compare Eqs.
~9! and~12!# the norm~i.e., the distance between the smalle
and the largest eigenvalue! of both matrices is of the sam
order in N. Therefore an appropriate parameter to indic
the relative strength of the continuum coupling is the ratio
the two norms. Equivalently it can be defined as the aver
degree of overlapping, given by the ratio of the summ
width per channel and the ‘‘width’’ of the spectrum,

k5
h

2A^«2&
. ~24!

For the trapped resonances this overlapping parameter i

k f5
~N2K !^Gm&

2KA^«2&
. ~25!

Then it follows from Eq.~23! that in the limitN°`

k f5
N2K

N

2A^«2&
h

°k21. ~26!

Assuming ergodicity@as expressed by the randomness
the eigenbasis~13!# the ensemble average may be replac
by the spectral average. Then Eq.~23! may even be applied
to a single system. In this case it may serve as a test for
trapping scenario to occur in the system considered: Eq.~23!
relates the product of the average width^Gm& of the trapped
resonances and the average widthh of the broad resonance
to the variance of the level density^«2&.

For smallk one can still consider the mean width of th
N2K smallest resonances in order to havek f well defined
globally. Then this quantity will be equal to the mean wid
of all resonances, ifk is sufficiently small. Therefore

k f5H k, k!1

k21, k@1.
~27!

We define the weak coupling regime byk!1, so that the
upper part of Eq.~27! is fulfilled, and the strong coupling
regime byk@1 so that the lower part becomes valid.
between~the critical region! the redistribution takes place.

For illustration, in Fig. 1 the trapping process is portray
for both the GOE and the POE, from the low coupling to t
high coupling regime. We plotk f versusk as defined in Eq.
~24!. A double-log plot is used in order to demonstrate t
proportionality relation~27!. As the level density is the sam
for the GOE and the POE~cf. Sec. II B!, the data points of
both the GOE and the POE case follow the same line for
coupling strengths within the numerical accuracy. The asy
metry on the left side of the plot is due to the finite dime
sion N5300 in our calculations.
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56 2485CORRELATIONS BETWEEN RESONANCES IN A . . .
The redistribution between the two scenarios at small
large couplingh occurs rather promptly atk'1. Here the
K broad poles appear, which will almost share the total s
of the widths, whereas the remainingN2K resonances will
become more and more long lived in the strong coupl
regime. The pointk51, at whichk f reaches its maxima
value, is called the critical point. Note the peculiar propert
of the transmission coefficient@25,9# and of the width distri-
bution @20# at this point.

IV. WIDTH DISTRIBUTION

In the weak coupling regime the widths are approximat
given by the diagonal elements of the coupling matrixVV†

~11!. These are sums ofK random Gaussian variables an
therefore,xK

2 distributed when normalized to unit mean

p~y!5xK
2 ~y!5

~K/2!K/2

G~K/2!
yK/221e2K/2y. ~28!

For the GOE the same distribution holds in the strong c
pling region as shown for the one channel case in@5#, by
calculating the joint probability distribution for the comple
eigenvalues ofHeff explicitely. For the POE the width distri
bution becomes much broader.

The numerical results are shown in Fig. 2. Here a serie
width distributions for the GOE~left side! and the POE
~right side! for increasing coupling strengthk ~from top to
bottom! is given. Whenk.1, only the long-lived resonance
were taken into account. In each diagram, we plotted
numerical data ~histogram!, and the xK53

2 distribution
~dashed line!. For the POE atk5100 a best fitxq

2 distribu-
tion ~dotted line! is given. This distribution is calculated b
replacing in Eq.~28! K by a real parameterq and performing
a x2 fit in order to find the best estimate forq.

For both ensembles the GOE and the POE, the w
distributions undergo strong deformations in the critical
gion, but become stationary again in the strong coupl
limit. In contrast to the GOE case, which returns to its o

FIG. 1. The overlapping parameterk f of the trapped resonance
vs the overlapping parameterk of all resonances. The diamond
denote data points for the GOE, the crosses those for the POE
solid lines show the two asymptoticsk andk21.
d

m

g

s

y

-

of

e

th
-
g

shape, the distribution for the POE remains much broade
is in good agreement with the best fitxq

2 distribution with
q51.7.

Further investigations of the POE at strong coupling
more channels led to the following interesting behavior~cf.
Fig. 3!: The coupling to continuum leads to a broadening
the width distribution. For increasing number of chann
K its variance approaches double what it was at small c
pling ~or double what it is in the corresponding GOE cas!.

he

FIG. 2. Normalized width distributions for the GOE~left side!
and the POE ~right side! for different coupling strengths
k50.01, 0.1, 1, 10, and 100~from top to bottom!. Histogram of
the width distribution obtained numerically~solid line!. xK53

2 dis-
tribution ~dashed line!. Best fit xq51.7

2 distribution ~dotted line! on
the bottom left.

FIG. 3. Relative deviations of the variance of the width dist
butions ~POE, strong coupling! for K51, 3, 6, and 10 channels
The diamonds denote the variances calculated directly from
data, whereas the crosses denote 2/q, the variances of the best fi
xq

2 distributions. These values were divided by 4/K, which seems to
be the limit value for the variance atK°`.
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Whereas the variances of the best fit distributions system
cally underestimate the factor 2, the numerical varian
overestimate it.

In order to understand the broadening of the width dis
butions due to the coupling to continuum, we consider
one channel case in more detail. TheS matrix ~6!, with com-
plex argumentE, can be equivalently written as@23#

S~E!5
12 iR

11 iR
, R5

h

2
V1

1

E2H
V. ~29!

From that it follows that the poles of theS matrix are given
by the zeros of the function

f ~E!511
i

2
h(

i

v i
2

E2« i
. ~30!

The v i are the Gaussian random coefficients of the coup
matrix ~11! with variance 1/N and the« i are the real eigen
values ofH. We may consider the real and the imagina
part of f separately. As we are interested in the caseh°`
we only keep the highest order ofh, making use ofG;h21

~23!. Using the notationE5E2( i /2)G for the poles one ar-
rives at@11#

(
i

v i
2

E2« i
50,

4

hG
5(

i

v i
2

~E2« i !
2

. ~31!

Between every two neighboring levels there has to se
down one pole with increasingh due to the structure of Eq
~31!. Choosing an arbitrary one of them and taking into a
count only its two neighboring levels, we find the followin
formula for its width ~a detailed derivation is given in Ap
pendix A!:

G5
d0

2s2

h~v1
21v2

2!
~12t2!, t5

v2
22v1

2

v1
21v2

2
. ~32!

Here s is the distance between the two consecutive lev
measured in units of the mean level distanced0 in the center
of the spectrum. In our case of a semicircular level den
with radiusa, d05pa/(2N). In Appendix B we calculate the
distribution of the trapped widths normalized by their me
^Gn& ~23! for the GOE and the POE case. This is done
evaluating the following integral:

p~y5G/^Gn&!5
N

2pE dsP~s!E dv1dv2e2N/2~v1
2
1v2

2
!

3dF y2
p2s2

4N

12t2

v1
21v2

2G . ~33!

Here P(s) is the nearest neighbor distribution for the e
semble in consideration. The result for the GOE is

pG~y!5
1

A2py
S 11

2y

p D 23/2

, ~34!

and for the POE it is
ti-
s

-
e

g

le

-

ls

y

y

pP~y!5
1

4y
ey/p2

W21,0S 2y

p2D , ~35!

where

W21,0~z!5
2z

Ap
F S Az1

1

Az
D K0S z

2D2AzK1S z

2D G ~36!

is the Whittaker function@26#, andK0(z) andK1(z) are the
modified Bessel functions@27#. In Fig. 4 both distributions
are compared to the Porter-Thomas distributionxK51

2 ~28!
and the numerically obtained width distribution for the PO
case. Note that we plottedp(lny) instead ofp(y) for all
distributions in this figure, and we use a logarithmic scale
the abscissa. This is done in order to give an overall vi
and allowing at the same time for the recognition of t
interesting features discussed in the following.

Comparing Eq.~34! to the Porter-Thomas distribution, w
find that it agrees exactly in the leading power fory!1. For
large y@1 pG fails: it has ay22 tail which actually makes
the distribution non-normalizable.

For the POE case we observe the same features w
comparing Eq.~35! to the width distribution obtained nu
merically. Fory→`, W21,0(z)→exp(2z/2)/z leading again
to ay22 tail being inconsistent with the numerical result. O
the other hand, fory→0, pP(y) fits very well to the numeri-
cal distribution. HereK1(z)→1/z and K0(z)→2 lnz and,
therefore,

pP~y!→2
lny

pA2py
. ~37!

In the relevant rangey'1 both distributionspG(y) and
pP(y) show qualitatively how the level repulsion parame
b ~10! affects the width distribution of the trapped res

FIG. 4. Distributions of the logarithms of the widths in th
strong coupling limit for the one channel case. The prediction of
two level approximation for the POE~35! ~solid bold line! is com-
pared to the numerical result~solid line! produced by diagonalizing
200 matrices atk5100. The corresponding two level GOE resu
~34! ~dashed bold line! is compared to the exact distribution, th
Porter-Thomas curve~dashed line!.
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nances. Disregarding the tails, one can clearly see from
4 the broadening in the POE case (b50) in comparison to
the GOE (b51).

V. CORRELATIONS IN THE POSITIONS
OF THE RESONANCES

In order to measure the correlations between the posit
of the resonances, we apply the number varianceS2 @21#.
We investigate the GOE and the POE spectra in the diffe
coupling regimes: weak, critical, and strong coupling. F
the GOE similar investigations have already been done
@28#.

S2 measures the deviation of the accumulated level d
sity from a straight line. SmallS2 is a signature for high
rigidity of the level sequence. In this case the level spaci
are more or less equal. On the other hand, a completely
correlated sequence, as, for example, the POE spectrum
minimal rigidity and therefore maximalS2.

In contrast to@10# we focus on the few channel case~typi-
cally K53), because we are mainly interested in the diff
ences the GOE and the POE show at large coupling. N
that one result of@10# was that the POE spectrum at stro
coupling becomes more and more GOE-like with increas
number of channels.

For the numerical calculations we implemented the f
lowing technical steps: The spectra are unfolded to cons
mean level spacingd51. This is done by a polynomial fit o
the accumulated level density. Then the edges of the s
trum are skipped, which reduces the number of resonan
by approximately 25%. Furthermore, whenk.1, the K
broadest resonances are omitted. For the new reduced
trum $ei% consisting now ofN8 levels the correlations ar
investigated.

For an unfolded sequence$ei%, the mean number of level
found in an interval of lengthl is ^n( l )&5 l due tod51. The
number varianceS2( l ) is defined as the variance ofn( l ) in
the ensemble mean

S2~ l !5^n2~ l !&2^n~ l !&25^n2~ l !&2 l 2. ~38!

For the GOE and the POE~completely uncorrelated se
quence! this quantity is known analytically@21#. Instead, for
our purposes, it is sufficient to use the following approxim
expressions:

For the GOE

SG
2 ~ l !'

2 lnl

p2
10.442, ~39!

and for the POE

SP
2~ l !' l . ~40!

In Fig. 5 we show numerical calculations ofS2 for the
GOE ~a! and the POE~b! spectra. This is done for thre
different values of the overlapping parameterk50.1, 1, and
10. The smallest and the largest value are chosen such t
further decrease or increase ofk does not change any mor
the outcome forS2 significantly.

S2 for the GOE@Fig. 5~a!# shows good agreement wit
SG

2 ~39! for k50.1 andk510. Only in the critical region we
ig.

ns

nt
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n-
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-
te

g

-
nt

c-
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ec-

e
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notice a deviation, whereS2 becomes slightly larger for al
l .1. This decorrelation is due to the additional ‘‘degree
freedom’’ the resonance poles encounter in this regime@29#.
In contrast to the two other cases, where the poles are
stricted to a small stripe along the real axis, they now ha
enough space in the direction of the imaginary axis in or
to avoid close neighbors. This ‘‘width repulsion’’ cannot b
detected by observing the positions alone.

In @30# this decorrelation effect is investigated nume
cally for a similar system with the following result: Althoug
the level repulsion of the poles in the complex plane
creases with the number of channels, the level repulsion
the positions of the poles decreases. An explanation of
correlation measures to counteract each other is still o
standing@32#.

In the POE case@Fig. 5~b!# all correlations are induced b
the coupling to the decay channels. Therefore they grow w
increasingk. After completion of the redistribution~i.e.,
when the trapped resonances come sufficiently close to
real axis again! theS2 curve becomes stable. This happens
k510. Note that the deviations from the original straight li
do not vanish nor does the curve at largek coincide with that
of the GOE. Furthermore, it is remarkable that atk,1 the
rigidity increases mainly for largel and catches up atk.1
for small l .

VI. CORRELATIONS CONNECTED WITH THE WIDTHS

In @31# the number variance is generalized to anintensity
varianceby weighting each level with the intensity of its lin
as it appears in the cross section. Here we do the weigh

FIG. 5. Number varianceS2( l ) for three different values of the
overlapping parameterk50.1 ~diamonds!, k51.0 ~crosses!, and
k510 ~squares!. ~a! GOE and~b! POE. The solid lines show the
theoretical curves:SG

2 ~a! andSP
2 ~b!.
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with the widths of the resonances~in the one channel cas
both ways are identical!. We denote this quantity bySg

2( l ). It
gives the variance of the summed width in a given interva
lengthl . Neglecting possible correlations with the widths w
relateSg

2( l ) to the simple number variance. Then we co
pare the numerical results with this formula. Occurring d
crepancies indicate the existence of exactly those corr
tions which had been neglected in the beginning.

Following @31#, we define the width-weighted stick spe
trum

rg~x!5( yid~x2ei !, E rg~x!dx5N8 ~41!
rm

n

h

e

p
e
n
dt
w
c-
f

-
-
a-

with the normalized widthsyi5G i /^G&. For k.1 the K
broad resonances are again skipped. The summed wid
an intervalD of length l is

B~ l !5E
D
rg~x!dx ~42!

and consequently the variance of the summed width is

Sg
2~ l !5^B2~ l !&2^B~ l !&2. ~43!

Now, we relate this quantity to the number varianceS2( l ) in
the following way:
B2~ l !5(
i j

yiy jE
D2

d~x2ei !d~y2ej !dx dy

5(
i

yi
2H 1 EiPD

0 otherwise
1(

iÞ j
yiy jE

D2
d~x2ei !d~y2ej !dx dy. ~44!
s
ion,

m

The
hat
Eq.
er

y
ity
he
s de-
-

Assuming no position-width correlations, one may perfo
the averages in Eq.~43! separately

^B~ l !&5^y&^n~ l !&, ~45!

and, furthermore, assuming no width-width correlations, o
obtains

^B2~ l !&5^y2&^n~ l !&1^y&2

3(
iÞ j

K E
D2

d~x2ei !d~y2ej !dx dyL . ~46!

It is ^n( l )&5 l because the mean level distance is one. T
corresponding expression without width weighting is

^n2~ l !&5^n~ l !&1(
iÞ j

K E
D2

d~x2ei !d~y2ej !dx dyL .

~47!

Comparing Eqs.~46! and ~47! one arrives at

^B2~ l !&5^y2& l 1^y&2
„^n2~ l !&2 l …, ~48!

and finally using Eqs.~38! and ~45!

Sg
2~ l !5~Dy2!l 1S2~ l !. ~49!

Here (Dy2) is the variance of the width distribution. In th
case that the normalized widthsyi are xK

2 distributed,
(Dy2)52/K.

From Eq.~49! we see that we may clearly separate pro
erties stemming from the correlations in the energy sp
trum, as well as from the width distribution on one hand, a
correlations between energies and widths or between wi
at different energies on the other hand. To achieve this
proceed@31# to create from the true width-weighted spe
trum ~41! a synthetic one
e

e

-
c-
d
hs
e

r̃ g5( yp~ i !d~x2« i !,

where we apply a random permutationp to the indices of the
widths. As Eq.~49! only uses the independence of width
and levels the synthetic spectrum should obey this equat
while the true onerg may not if correlations exist.

Figure 6 shows the theoretical curvesSP
2 ~40! andSG

2 ~39!
as well asS2 for the numerically obtained energy spectru
for three channels andk5100. We, furthermore, show
Sg

22(Dy2) l for both the true and the synthetic~decorrelated!
width-weighted stick spectra under the same conditions.
result for the synthetic spectrum agrees very well with t
for the energy spectrum, as it should be according to
~49!. The Sg

2 obtained for the true spectrum, on the oth

FIG. 6. VarianceSg
2( l ) of the summed width subtracted b

(Dy2) l for the POE case (k5100). The crosses denote this quant
for the original spectrum which contains all correlations. T
squares correspond to the synthetic spectrum and the diamond
note the pure number varianceS2. The solid lines show the theo
retical curvesSG

2 andSP
2 .
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hand, differs greatly. This is a clear indication that the sp
trum in this case presents strong correlations, which mus
contrasted to the chaotic case where a similar analysis i
cates the absence of correlations. Note however that
agreement ofSg

22(Dy2) l with SG
2 for l ,5 is only acciden-

tal, what can be concluded from the results for differe
numbers of channels in Fig. 7.

The nature of these correlations is such that the spect
becomes more rigid due to the width weighting@disregarding
the term (Dy2) l #. This may be understood from Eq.~32!
meaning that the width of a trapped resonance is more lik
to be large if the distance between its neighboring level
large, tooGn;u«n2«n21u2.

Furthermore, we expect that for increasing numberK of
channels the effect of the position width and the width-wid
correlations vanishes, because the variance of the width
tribution 2/K becomes very small. In this case the sum of
normalized widths becomes more and more equal to
number of levels in the interval considered. This is verifi
in Fig. 7.

VII. SUMMARY

We considered the distortion of a regular system by
couplingk to the continuum of decay channels. We obtain
results for the following.

~i! The width distribution, as it is altered with increasin
k. In the weak coupling limit for both the GOE and the PO
the widths arexK

2 distributed when normalized to unit mea
Then with increasingk their distributions become broade
For the GOE, the widths return to their original distributio
in the strong coupling limit. For the POE, the width dist
bution becomes approximately axq

2 distribution again, but in
contrast to the GOE with a much larger variance as be
~cf. Fig. 2 and Fig. 3!.

~ii ! The correlations between the positions alone. For this
analysis we used the number varianceS2. For the GOE we
found correlations, as they are typical for the level statis
of a closed system in both the weak and the strong coup
region. Only in the critical region do the correlations beco
weaker. The POE starts without correlations. Then they

FIG. 7. VarianceSg
2( l ) of the summed width subtracted b

(Dy2) l for the original spectrum, containing all correlation
(k5100). The diamonds denote the caseK56, the upright crosses
K53, the squaresK52, and the crossesK51. The solid lines
again showSG

2 andSP
2 .
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crease steadily with the coupling parameterk ~cf. Fig. 5!.
~iii ! The correlations connected with the widths. Here we

used the generalized measureSg
2 @31#, calculated from a

width-weighted stick spectra. Two additional types of cor
lations appear, namely, between the position and the widt
each resonance and between the widths of different re
nances. In the GOE case they appear only in the crit
region, whereas in the POE case they increase steadily~cf.
Figs. 6 and 7!.

Furthermore, we derived an analytic expression for
width distribution of the GOE and POE in the one chann
case at strong coupling~cf. Fig. 4!. This is achieved by re-
lating the width of a trapped state to the distance of the t
neighbored levels. In this way, the different width distrib
tion of the GOE and POE is explained.

The results of our investigations show the special role
the GOE. Its properties survive the distortion of the syst
by coupling it to the continuum: at large coupling the corr
lations and the width distribution are the same as at l
coupling. In contrast to the GOE, the properties of the P
are not restored at the strong coupling strength.

Realistic systems are often in the critical region whe
correlations in the spectrum are induced by the coupling
the continuum. Under these conditions theS-matrix poles are
difficult to find. Nevertheless, they determine the statisti
properties of the cross section. We will investigate this pro
lem in a forthcoming paper for both the GOE and the PO

ACKNOWLEDGMENT

Valuable discussions with G. Soff and V. V. Sokolov a
gratefully acknowledged. The investigations are suppor
by DFG ~Ro 922/6! and by DAAD.

APPENDIX A: RESONANCE WIDTH
IN THE TWO LEVEL APPROXIMATION

Writing Eq. ~31! for two neighboring levels, we get

v1
2

s1
D

2

1
v2

2

s2
D

2

50,
v1

2

S s1
D

2 D 2 1
v2

2

S s2
D

2 D 2 5
4

hG
,

~A1!

whereD5«22«1 is the distance between the levels andE is

substituted byE5 1
2 («11«2)1s. Due to the first equation

s52
D

2

v2
22v1

2

v1
21v2

2
52

D

2
t. ~A2!

Inserting this result into the second equation of~A1! yields

D2

hG
5

v1
2

~12t!2
1

v2
2

~11t!2
5

v1
21v2

2

12t2
. ~A3!

Finally, measuringD in units of the mean level spacin
D5d0s in the center of the spectrum, andG in units of the
mean widthG5^Gn&y according to Eq.~23!, one arrives at
Eq. ~32!
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y5
p2s2

4N~v1
21v2

2!
~12t2!. ~A4!

APPENDIX B: WIDTH DISTRIBUTION

The width distribution according to Eq.~32! is

p~y!5
N

2pE dv1dv2e2N/2~v1
2
1v2

2
!E dsP~s!

3dF y2
p2s2

4N~v1
21v2

2!
~12t2!G . ~B1!

Transforming v1 and v2 into spherical coordinate
r /ANcosf and r /ANsinf so that t5sin2 f2cos2 f
52cos 2f, we get

p~y!5
1

2pE r dr df e2r 2/2E ds P~s!

3dF y2
p2s2sin22f

4r 2 G . ~B2!

It is enough to integratef from 0 to p/4 because of the
eightfold symmetry of the integrand. Applying, in additio
the transformationx5sin2 2f

p~y!5
1

pE r dr e2r 2/2E
0

1 dx

Ax~12x!
E ds P~s!

3dF y2
p2s2x

4r 2 G . ~B3!

In order to go ahead we consider the two cases GOE
POE separately in the following subsections.

1. GOE case

Here the nearest neighbor distribution reads

PG~s!5
p

2
s e2ps2/4. ~B4!

In order to resolve thed function, we substituter as a func-
tion of y85p2s2x/(4r 2) and use*d(y2y8) f (y8)dy5 f (y).
This leads to

pG~y!5
p2

16y2E0

1

dxS x

12xD 1/2E
0

`

ds s3e2as2
,

nd

a5
p

4 S 11
px

2y D . ~B5!

The integral over the level spacings gives 1/(2a2) and it
remains a last integration, namely,

pG~y!5
2

p2E0

1

dxS x

12xD 1/2S 2y

p
1xD 22

. ~B6!

This may be solved by substitutingt5Ax/12x

pG~y!5
4

p2~11b!2E0

`

dt
t2

S t21
b

b11D 2 , b5
2y

p

~B7!

and integrating by parts. Then

pG~y!5
1

p~11b!2S 11b

b D 1/2

5
1

A2py
S 11

2y

p D 23/2

.

~B8!

2. POE case

Here the nearest neighbor distribution is

PP~s!5e2s. ~B9!

In contrast to the GOE case we first substitutes instead of
r . It follows that

pP~y!5
1

p2Ay
E r 2dr e2r 2/2E

0

1 dx

xA12x
e22r /pAy/x

5
2

p2Ay
E dr r 2e2r 2/2E

1

`dz e2az

Az221
, a5

2r

p
Ay.

The last integral represents the modified Bessel function@27#

pP~y!5
2

p2Ay
E dr r 2e2r 2/2K0S 2Ay

p
r D . ~B10!

This integral can be found in@26#

pP~y!5
1

4y
e~y/p2!W21,0~2y/p2!. ~B11!
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