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The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels
is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of
only a few channel&<10. The coupling to the continuum induces two main effects, due to which the
distorted system differs from a chaotic systé&escribed by a Gaussian ensemb(® The width distribution
for large coupling becomes broader than the correspon;@lﬁ”lglistribution in the Gaussian orthogonal en-
semble casdii) Due to the coupling to the continuum, correlations are induced not only between the positions
of the resonances but also between positions and widths. These correlations remain even in the strong coupling
limit. In order to explain these results, we relate the width of a trapped resonance state to the distance between
its neighboring levels and derive an asymptotic expression for the width distribution for the one channel case.
[S1063-651%97)08308-9

PACS numbg(s): 05.30.Ch, 05.46:j, 03.65.Nk

I. INTRODUCTION son to theyZ distributed widths in the GOE case. This
broadening is quasi-independent of the number of channels.
Resonances are states of an open quantum mechanigalsimilar effect has been found in the transition-strength
system, in which the internal dynamics of the underlyingdistribution of a closed systefi6,17]. There the broadening
closed system is disturbed by the coupling to the decay charer increase in entropyis explained by the onset of chaos.
nels. For the small coupling strength the widths of the resoNote that a broad width distribution implies deviations from
nances increase with growing coupling, while their positionsthe exponential decay laji8,19.
remain almost unchangeld—3]. Therefore the degree of A physical example of a regular system, coupled to the
overlap of neighboring resonances increases. This gives rismntinuum, is investigated if11,13 on experimental and
to interferences and the internal dynamics may suffer dratheoretical grounds. The regular motion of the microwaves
matic changes. If the coupling strength passes over a criticahside a rectangular resonator is disturbed by an attached
value, a segregation of the decay widths occurs. Finally, foantenna, which defines the decay channel. Theory predicts
large couplingsK rapidly decaying modes anld—K nar-  the effective coupling of the antenna to the resonator to in-
row resonances result from this interference pro¢dss|. crease with the frequency. The experimental data was ob-
In the following we stick to the statistical approafh,8], tained in the regime of strong external coupling, where the
which is more appropriate for the case of many resonancesesonance widths have already segregated. It should be pos-
Then the internal dynamics of the system in consideration isible to apply the results obtained in the present paper to this
modeled by a matrix ensemble. This may be chosen to deexperimental setup.
scribe regular and chaotic motion, respectively. In the following we compare the results for a regular sys-
The distortion ofregular motion by coupling a closed tem described by a POE with those of a chaotic system de-
guantum system to the continuum has up to now receivedcribed by a GOE, both coupled in the same way to the
little attention theoreticallf9—-11] and experimentally12—  continuum. Our interest focuses on the width distribution and
14]. In contrast to that, such problems draw considerablé¢he correlations induced by the coupling of the system to the
attention in classical and semiclassical theofies.,[15] continuum of decay channels.
and references thergint would be desirable to connect the  In Sec. I, we describe the statistical model used in our
approaches from both fields. The present work is meant to b&vestigations, as well as some technicalities, concerning the
a first step along that way. numerical studies performed. A redistribution of the spectro-
In [10], the regular motion is described by a Poissonianscopic properties takes place in the system if its coupling to
orthogonal ensembl@POB). Its perturbation due to its cou- the continuum of decay channels is sufficiently strong. We
pling to the continuum of decay channels is investigated as aketch this mechanisirapping effect and give the formula
function of a parametet, which characterizes the coupling for the mean width of the long-lived resonances in Sec. Ill.
strength. Level repulsion appears at largerhere the widths  The distribution of the widths most characteristic of the trap-
have already segregated. There, with an increasing numbging effect is considered in Sec. IV. In Sec. V, we present
of channels, the correlations in the positions of the resoeur results for the correlations in the positions of the reso-
nances approach those, characteristic for the Gaussian arances while correlations between widths and positions are
thogonal ensembléGOE). At the same time the distribution discussed in Sec. VI. Some conclusions are drawn in Sec.
of widths experiences a considerable broadening in comparWII.
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Il. MODEL S(E)=1—ipVI[E—Hgq] V. (6)
A. Projection formalism _
Its complex poles are given by the eigenvalugs of the

Our analysis proceeds from the statistical md@e¢b]. By non-Hermitian Hamiltonian

using the projection operator techniqi@] we coupleN
bound states|(;), i=1, ... N) to K common decay chan-
nels (x.(E)), c=1, ... K) via the two body residual inter- Hep=H—
actionV. We are mainly interested in the bound state part of
the system and its perturbations by the environment of decay .
channels. To this end, we investigate the statistical propertie‘é’It
of the system as a function of the coupling strength to the .
channels. 7 g _ '
o . En=En—35Th. ()

The total Hamiltonian of the whole quantum mechanical 2
system consists of three different parts: the Hamiltortian
describing the closed system of bound states, a term describ- Under the influence of the external coupling, the eigen-
ing the K continua, and a third term which specifies the states of the Hermitian matrid are turning into resonances
coupling between the two subspaces: with a finite lifetime. In the case of nonoverlapping reso-

nances, the real pa, and the imaginary palft, in Eq.(8),

5V, Y

N K give the position and the total decay width of the resonance.
Htot:izl |q’i>Hii<¢i|+;l J’ dE[xc(E))E(x(E)| We will stick to these terms in all cases, remembering the
! definition as poles of th& matrix.
K N
+C§1 ;1 j dE[[ @)V F(E)Xxc(E)|+H.c]. (1) B. Scattering ensemble

Following [5] we representy; in the eigenbasis of its
Here theV 7(E) are the coupling matrix elements between Hermitian partH. Demanding orthogonal invariance of the
the bound stateigsb;) and the scattering statgg.(E)). They  scattering ensemble, the matrix ensemble is characterized
can be understood as the components ofNadimensional  solely by the eigenvalue distribution df, and the anti-
vectorV °. Its norm is a measure of the coupling strength toHermitian part—i»/2 VV' is independent on the specific
the channek. Direct reactions are neglected. We considerchoice of the ensemble. In all casésconsists oK random
scattering systems with time reversal invariance, so we cagolumn vectors. For larghl this implies the elements of

restrict ourselves to real matrice; andV {(E). being independent random Gaussian variables with
As shown in[3] the S matrix of such a system reads
1
N (Via)=0, (VR)=r- E)

S.p(E)= 5ab—2wiij221 VAE)G(E)WXE), (2
’ It follows that the matrix elements of the anti-Hermitian part

whereg is the propagator in the perturbed systeim W, ((VVT)i2j> are of the ordeN 2.
The pole distribution for théH 4 ensemble may be ex-

G=[E-H-W"]1, (3)  pressed by5]
and the generally complex operatdf®™ describes the per-
turbations from outside, P{E; ij}):CJ d{e, dV (Vv o}
K C ! Cc ! .
V(E"HV(E i
WﬁXt:E de/ i ) l( ) (4) XH 5(de{Heﬁ—Ej+_F]‘DH |8m_8n|B
& E+ic—E' j 27}/ m<n
According to Eq.(2), the pole structure of th& matrix is N 5 N 5
given by the eigenvalues of the operatbs- W We sup- Xexp — ;; €n |€XQ ~ E% Vha|- (10

pose, that the quantitias (E') are(almos} independent of
the excitation energy, which is justified if one considers a ¢ s a normalization constant. The indicgs k, I, m,
finite energy region sufficiently far from the reaction thresh-54qn are running from 1. . . N, while a numbers the chan-

olds. With this assumption Eg4) simplifies nels 1 ... K. The integration runs over the whole ensemble
Kk parametrized by the eigenvalugés,} of H and the coeffi-
WeXle — — ViV 5 qlents{v|a} of _the coupllng_matnx. By means of th%func-_
) 2 7702’ e ® tions, the positions and widths of the resonances are intro-

duced as the new variables of the distribution. The first part
where we replaced’{ by 27/ 5V, V. being aNxK in the last line represents the eigenvalue distributiorHof
matrix with on the average unit column vectors, aptleing  wherea is related to the range of the spectrum. The last part
the total coupling strength per channel. Then ghenatrix  in this line represents the distribution of the matrix elements
takes the form of V.



56 CORRELATIONS BETWEEN RESONANCES IN A ... 2483

The parameteB> — 1 controls the degree of level repul- beyond the simple ansatz sketched above. This is done in the
sion. B=1 refers to the GOE an@=0 to the POE case. following subsection.
B—x describes a completely rigid spectruimrmonic os-
cillator), while 8<0 refers to a spectrum showing level clus-
tering. Note that the casgd=2 andB3=4 do not describe . .
the unitary and symplectic ensembles, because we always We Will calculate the mean width of the trapped reso-
work with real matricesV, demandingorthogonal invari- nances in the strong coupling regime followif§,23. In
ance addition to what has been done there, we explicitly show the

In the following we restrict ourselves to the cages1  applicability to the POE casgn fact it may be applied to
(GOE) and =0 (POB. For the GOE the level density is any orthogonal invariant ensemble for arbitrghas defined
described by Wigner's semicircl21], a being its radius. N Eq. (10)]. In order to exploit the orthogona] invariance we
For the POE Eq(10) would produce a Gaussian shaped leveln€ed the first and second moments of the distributions of the
density. But in order to compare the correlations in bothMatrix elements in a genericandom basis. For the GOE
ensembles we find it more convenient to have equal levdhey are[21]
densities. Therefore, we choose thg} in the POE case as

B. Mean width of the trapped resonances

distributed according to Wigner’s semicircle law, too. a_’ i=]j

Unless stated otherwise, all numerical calculations were (Hi)=0 (H-2->= 2N (12)
done by diagonalizingd . of dimensionN=300 and with 4 ' g a2
K=3 channels being approximately orthogonal to one an- N’ 17

other, due to the centralized distribution of their components.

V is aNXxX K matrix with random Gaussian coefficients with For the POE lculate th ts starting f th
zero mean and varianceNL/ The calculations are performed or the we calcuiate these moments starting Irom the

for 50 matrices chosen from the GOE or the POE, respecI_evel distribution, and applying a random orthogonal trans-

tively. Then the statistical observables are calculated as a\;(_)rmanono
erages over the central part of the spectrum and over the
ensemble(the 50 matrices simultaneously. In the case of
correlation measureS@ andES in Sec. V and Sec. Vlthe
positions of the resonances are unfolded to the equal mean

level spacingd=1. So every element dfl is defined by

1
H=0Odiag{e;}O", (0;;)=0, <oi2j>=N. (13)

Ill. RESONANCE TRAPPING
Hj; = Oike Oy - (14)
A. Separation of time scales k

the formation of separate time scales. In the strong couplin ue to the centralized distribution of tHe;} the first mo-

regime 751, K resonances become very broad by “trap- ent(Hj;) is 2zero agaln._Then we calculate the average of
ping” the remainingN— K ones[5,22]. Mathematically the the squareddj; . As the eigenvalues are not correlated, we
trapping effect is caused by the fact that the rank of thed€t

Hermitian part ofH . is N while that of the anti-Hermitian

part — (i 7/2)VV' cannot be larger thak<N due to its (Hﬁ-)

dyadic form (7). Thus we have the following picture: At

weak coupling the resonances do not overldp)<D, 3 332

whereD is the mean level distance, and the anti-Hermitian <2 Oﬁ@ﬁ*‘z o?koﬁgkgl =—(e?)y=——, i=]

part of Hey may be treated by the first order perturbation k k#I N 4N

One of the specific properties of open quantum systems E

theory. Then the widths of the resonances are well approxi-- ) 2n 1 a?
mated by the diagonal elements\6¥" and have comparable 2 OikeiOjk =—(e%)y=— i#].
: K N 4N (15
magnitude,
— 2
L= 772;4 Via- 11 Note that only the diagonal elements differ from the GOE

case in their second moment.
_ _ In the following we show that the mean width of the
In the opposite case of strong coupling, the resonances ovefrpped resonances can be calculated from the second mo-
lap and the anti-Hermitian part (i 72)VV! dominates the  hents of the matrix elements;; . To this end we turn to the
behavior of the dgcaylng system. The appropriate basis ighannel representation bf.. In this basis the channel vec-
now the eigenbasis of' V' consisting ofK channel vectors (4 are the firsk canonical vectors and the remainiNg- K

(theT columns o) andN—K vectors, spanning the kernel of yectors constitute a basis for the kerneNo#. Then
VV'. The channel vectors have the common eigenvajue

The widths of the remaining states are zero. s 0
In order to get some information about the magnitude of Her=H— ! ( ab ) (16)
€

the widths of the trapped resonances it is necessary to go 2" o o
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a andb again serve as channel indices, while the greek let- 4 ) )
tersu andv are used in connection with the long-lived reso- (L= 7 Ea Dla :m?<8 >:N_77' (23
nances. We diagonaliZé in the kernel ofVV' by the fol-

lowing orthogonal transformation: Note that the diagonal elements ldf do not enter into the

S 0 calculation ofT",,), so that Eq(23) holds for both the GOE
( ab ) and the POE.
Although the matrix elements of the Hermitian and the
_ anti-Hermitian part scale differently witN [compare Egs.

Ho — '_775 * (9) and(12)] the norm(i.e., the distance between the smallest
ab ab and the largest eigenvaluef both matrices is of the same
order inN. Therefore an appropriate parameter to indicate
the relative strength of the continuum coupling is the ratio of
the two norms. Equivalently it can be defined as the average
0 en’ d<_agree of overlapping, given. by the ratio of the summed

width per channel and the “width” of the spectrum,

0O P

nv
D= PTHeﬁP: 8|,(+l 0 . (17)

Note that{e,} differ from the eigenvalue$s;} of H. D is
symmetric and therefore the submatrices denoted by * are

transposed to each other, K 5 \/@ (24)
N N
D"bzmz Py HkiPib= E P,.Huwp. (18 For the trapped resonances this overlapping parameter is
T=1 v=K+1
TheP,,, are only correlated with the matrix elemehtg, as Kfzw (25)
they are diagonalizing this submatrix, but not with,y,. 2K (&%)
Therefore one may average over these quantities indepen-
dently. Then it follows from Eq.(23) that in the limitN~—>x
Now we calculate approximate eigenvaluesbfby ap-
plying a Jacobi transformation of dimensikin- 1 [24]. Such N-K 2\(e?) |
a transformation is trace invariafthis is important because Kt=™N K (26)
the total width should be conserye&o we look for the zero
of the following determinantfor arbitraryK+1<u<N): Assuming ergodicitjas expressed by the randomness of
- the eigenbasi$13)] the ensemble average may be replaced
Eume, Duay -+ Duk by the spectral average. Then E83) may even be applied
D1 to a single system. In this case it may serve as a test for the
de | _o (19 trapping scenario to occur in the system considered(Zg).
: T —Hat _775 ) ' relates the product of the average widih,) of the trapped
pooan e resonances and the average wigtlf the broad resonances
D .« to the variance of the level density?).

For small« one can still consider the mean width of the
Taking into account only the highest ordersiinwe arrive at  N—K smallest resonances in order to havewell defined

2 globally. Then this quantity will be equal to the mean width

—e +2 - + Ay 2)=0. 20) of all resonances, ik is sufficiently small. Therefore
a
E—Haat = 2 . K, k<l @7
f k1 k>1.

We can read the approximate position and width of a trapped

resonance from the real and the imaginary par?pf For  We define the weak coupling regime <1, so that the
n—% we get upper part of Eq(27) is fulfilled, and the strong coupling
regime by «>1 so that the lower part becomes valid. In
between(the critical region the redistribution takes place.
For illustration, in Fig. 1 the trapping process is portrayed
for both the GOE and the POE, from the low coupling to the
The final step is the calculation of the ensemble meahj%f high coupling regime. We plot; versusk as defined in Eq.

4
_ _ 2
E =¢ F#—;Ea: D2,. (21)

[using Eqs.(12) and(15)] (24). A double-log plot is used in order to demonstrate the
5 proportionality relation27). As the level density is the same
<E P2 H? >: 2y~ (&%) (22 for the GOE and the POEf. Sec. Il B, the data points of
va N - both the GOE and the POE case follow the same line for all

coupling strengths within the numerical accuracy. The asym-
From that it follows that the mean width for the trapped metry on the left side of the plot is due to the finite dimen-
resonances is sion N=300 in our calculations.



56 CORRELATIONS BETWEEN RESONANCES IN A ... 2485

Kf ¢

0-h1 1 10
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FIG. 1. The overlapping parametey of the trapped resonances
vs the overlapping parametear of all resonances. The diamonds
denote data points for the GOE, the crosses those for the POE. The
solid lines show the two asymptotiesand <~ 2. 08

The redistribution between the two scenarios at small and 0 1 2 3
large couplingn occurs rther promptly at~1. Here the Y
K broad poles appear, which will almost share the total sum . . S .
of the widths, whereas the remainifg- K resonances will FIG. 2. Normalized width distributions for the GQOeft side
become more and more long lived in the strong coupling?"d the POE (right sidg for different coupling strengths
regime. The pointc=1, at which «; reaches its maximal *<=0.01, 0.1, 1, 10, and 10Grom top to bottom. Histogram of
value, is called the critical point. Note the peculiar propertiesh® Width distribution obtained numericaligolid line). s dis-
of the transmission coefficiefi25,9] and of the width distri- tribution (dashed ling Best fit x5, ; distribution (dotted ling on
bution[20] at this point. the bottom left.

shape, the distribution for the POE remains much broader. It
IV. WIDTH DISTRIBUTION is in good agreement with the best j{ﬁ distribution with

In the weak coupling regime the widths are approximatelyd ™~ L7. : L .
given by the diagonal elements of the coupling matrivt Further investigations of the POE at strong coupling for

(11). These are sums d&f random Gaussian variables and, M°"€ channels Ie_d o the fo!lowing interesting beha\('u:_fr
therefore,xZ distributed when normalized to unit mean '::hlg vs\,/)i.dz—hh?jiz?rlijt?lljltrilgntoIfgrntig](?rlég]sgﬁads to a broadening of
. g number of channels

K its variance approaches double what it was at small cou-

K/2)K2 pling (or double what it is in the corresponding GOE dase
P(Y)=xk(y)= %ym*e‘w- (28)
For the GOE the same distribution holds in the strong cou- 14} .
pling region as shown for the one channel cas¢5h by
calculating the joint probability distribution for the complex 1.2} : ]
eigenvalues oH ¢ explicitely. For the POE the width distri-
bution becomes much broader. NZ’ 1 e e i
The numerical results are shown in Fig. 2. Here a series of — + ¥
width distributions for the GOHleft side and the POE i + +
(right side for increasing coupling strengtk (from top to 08
botton) is given. Wherk> 1, only the long-lived resonances
were taken into account. In each diagram, we plotted the 0.6
numerical data (histogram, and the x3_, distribution b 4 + . . 4 3
(dashed ling For the POE ak=100 a best fib(é distribu- i
tion (dotted ling is given. This distribution is calculated by K
replacing in Eq(28) K by a real parameter and performing FIG. 3. Relative deviations of the variance of the width distri-
a x* fit in order to find the best estimate far butions (POE, strong couplingfor K=1, 3, 6, and 10 channels.

For both ensembles the GOE and the POE, the widtlthe diamonds denote the variances calculated directly from the
distributions undergo strong deformations in the critical re-data, whereas the crosses denotg Hie variances of the best fit
gion, but become stationary again in the strong coupling distributions. These values were divided bi Aivhich seems to
limit. In contrast to the GOE case, which returns to its oldbe the limit value for the variance &t—c.
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Whereas the variances of the best fit distributions systemati- ' ' ' ' N ' '
cally underestimate the factor 2, the numerical variances =
overestimate it.

In order to understand the broadening of the width distri-
butions due to the coupling to continuum, we consider the __

one channel case in more detail. TBenatrix (6), with com- g
plex argument, can be equivalently written 423] =
1-iR 7. L 0.01 1
S(S)—m, R= EV 5—_HV' (29
From that it follows that the poles of tH& matrix are given s
by the zeros of the function 12 -0 -8
2
. | E Uj
f(&)=1+ 577 T E—g (30 FIG. 4. Distributions of the logarithms of the widths in the

strong coupling limit for the one channel case. The prediction of the
Thew; are the Gaussian random coefficients of the couplingWo level approximation for the POES) (solid bold ling is com-
matrix (11) with variance 1N and thee; are the real eigen- pared to t.he numerical resykolid line) prqduced by diagonalizing
values ofH. We may consider the real and the imaginaryzoo matrices ak=1_00._ The corresponding two Iev_el GOE result
part of f separately. As we are interested in the cgse (34) (dashed bold lingis compared to the exact distribution, the
we only keep the highest order gf making use o’ ~ 51 Porter-Thomas curvédashed ling
(23). Using the notatiorf=E— (i/2)I" for the poles one ar-

rives at[11] 1 2 2y
pe(y)= 4_ey/ﬂ W_ 1,0( — | (35
2 4 v2 Y i
Ui i
zi: E—e; nl’ zu: (E—¢g;)? 3y where
Between every two neighboring levels there has to settle 25 1 . .
down one pole with increasing due to the structure of Eq. W_,o2)= _{( Jz+ — Ko(‘) - \/EKl(_> (36)
(31). Choosing an arbitrary one of them and taking into ac- ’ N Jz 2 2

count only its two neighboring levels, we find the following

formula for its width(a detailed derivation is given in Ap- s the Whittaker functiori26], and Ko(z) andK,(z) are the
pendix A): modified Bessel functionf27]. In Fig. 4 both distributions
are compared to the Porter-Thomas distributign., (28)

_ dos? 1- 2 _ v3—vf 32 and the numerically obtained width distribution for the POE
B 77(v§+v§)( ) 7= 2402 case. Note that we plotted(Iny) instead ofp(y) for all

distributions in this figure, and we use a logarithmic scale on

Here s is the distance between the two consecutive level§h® abscissa. This is done in order to give an overall view
measured in units of the mean level distadgen the center a@nd allowing at the same time for the recognition of the
of the spectrum. In our case of a semicircular level densitjnteresting features discussed in the following.

with radiusa, d,= wa/(2N). In Appendix B we calculate the ~_ COmparing Eq(34) to the Porter-Thomas distribution, we
distribution of the trapped widths normalized by their meanfind that it agrees exactly in the leading power yo& 1. For
(T',) (23) for the GOE and the POE case. This is done bylarge y>1 pg fails: it has ay™ < tail which actually makes

evaluating the following integral: the distribution non-normalizable.
For the POE case we observe the same features when

N 5 comparing Eq.(35) to the width distribution obtained nu-
p(y=F/<Fv>):Zf dSP(S)f dv,dv,e VALY merically. Fory—o, W_; (z)—exp(—2z2)/z leading again
to ay 2 tail being inconsistent with the numerical result. On
the other hand, foy—0, pp(y) fits very well to the numeri-
. (33 cal distribution. HereK;(z)—1/z and Ky(z)— —Inz and,
therefore,

m?s? 1— 72

>< U —
P 4N v§+v§

Here P(s) is the nearest neighbor distribution for the en-
semble in consideration. The result for the GOE is Iny 37

pP(y)_) - W\/ﬂ
Zy) -3/2

1
= —| 1+ —
Pa(y) V2my ™ In the relevant rangg~1 both distributionsgpg(y) and
pe(y) show qualitatively how the level repulsion parameter
and for the POE it is B (10) affects the width distribution of the trapped reso-

(39
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nances. Disregarding the tails, one can clearly see from Fig. 2.0 ' ' ' '

4 the broadening in the POE cas@=0) in comparison to i a)
the GOE B=1). 16 .
V. CORRELATIONS IN THE POSITIONS 12 F PR Feee T .
OF THE RESONANCES L LT R 2 &35

+ a &

In order to measure the correlations between the positions 98| -
of the resonances, we apply the number variabéd21]. M+ 7
We investigate the GOE and the POE spectra in the different 04 H .
coupling regimes: weak, critical, and strong coupling. For .
the GOE similar investigations have already been done in~ . . . .

[28]. A ' ' ' '

32 measures the deviation of the accumulated level den- b) o
sity from a straight line. Smalk? is a signature for high 20 5 a
rigidity of the level sequence. In this case the level spacings Ll
are more or less equal. On the other hand, a completely un- 15 | “ s s i
correlated sequence, as, for example, the POE spectrum ha Cen®
minimal rigidity and therefore maximal?. ol Tra’ |

In contrast td 10] we focus on the few channel cagpi- o
cally K=3), because we are mainly interested in the differ- Yo :
ences the GOE and the POE show at large coupling. Note or ¥ a® ]
that one result of10] was that the POE spectrum at strong #s °
coupling becomes more and more GOE-like with increasing 0, 2 m B 50 5
number of channels. l

For the numerical calculations we implemented the fol- ) 2 .
lowing technical steps: The spectra are unfolded to constant F:G' 5. Number varianc&“(1) for three different values of the
mean level spacing= 1. This is done by a polynomial fit of °'<; aPPd parametex=0.1 (diamonds, «=1.0 (crossek and
th lated | | .d v Then the ed f th =10 (squares (@) GOE and(b) POE. The solid lines show the
e accumulated level density. Then the edges of the Speg:.rerical curvess2 (@ and32 (b).

trum are skipped, which reduces the number of resonances

by approximately 25%. Furthermore, wher>1, the K notice a deviation, wher&? becomes slightly larger for all

gLor?d{ee_S; Le;:sr;:t?ﬁesnﬁ\r; gm'}tfg\}ellz;rtrtlgecgfxvel;?igl:;egrzp?g1. This decorrelation is due to the additional “degree of
: . 9 freedom” the resonance poles encounter in this redip®é
investigated. In contrast to the two other cases, where the poles are re-
For_an uqfolded sequen(@e_i}, the mean number of levels stricted to a small stripe along the real axis, they now have
found in an _mtervz;l of !ength is(n(1)) =1 due_: tod=1. The enough space in the direction of the imaginary axis in order
number varianc&“(l) is defined as the variance ofl) in to avoid close neighbors. This “width repulsion” cannot be
the ensemble mean detected by observing the positions alone.
201y — (121 2 /n2(1\\ |2 In [30] this decorrelation effect is investigated numeri-
A=) = (n(H)"={n* (D) ~1% 38) cally for a similar system with the following result: Although
For the GOE and the POEcompletely uncorrelated se- the level repulsion of the poles in the complex plane in-
quence this quantity is known analyticallf21]. Instead, for ~ creases with the number of channels, the level repulsion of
our purposes, it is sufficient to use the following approximatethe positions of the poles decreases. An explanation of the
expressions: correlation measures to counteract each other is still out-
For the GOE standing[32].
In the POE casfFig. 5(b)] all correlations are induced by
) n the coupling to the decay channels. Therefore they grow with
3a(l)=—-+0.442, (39  increasingx. After completion of the redistributiorti.e.,
™ when the trapped resonances come sufficiently close to the
and for the POE real axis againthe .2 curve becomes stable. This happens at
x=10. Note that the deviations from the original straight line
S3(h)=I. (400  do not vanish nor does the curve at lakgeoincide with that
of the GOE. Furthermore, it is remarkable thatkat1 the
In Fig. 5 we show numerical calculations Bf for the rigidity increases mainly for large and catches up at>1
GOE (a) and the POEb) spectra. This is done for three for smalll.
different values of the overlapping parameter 0.1, 1, and
10. The smallest anq the largest value are chosen such that\?]_ CORRELATIONS CONNECTED WITH THE WIDTHS
further decrease or increase ofdoes not change any more
the outcome foi? significantly. In [31] the number variance is generalized toiarensity
32 for the GOE[Fig. 5&] shows good agreement with varianceby weighting each level with the intensity of its line
Eé (39) for k=0.1 andx=10. Only in the critical region we as it appears in the cross section. Here we do the weighting
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with the widths of the resonancém the one channel case with the normalized widths;=T1";/{I"). For k>1 the K

both ways are identicalWe denote this quantity b%(l). It  broad resonances are again skipped. The summed width in
gives the variance of the summed width in a given interval ofan intervalA of lengthl is

lengthl. Neglecting possible correlations with the widths we

relate32(1) to the simple number variance. Then we com- _J’

pare thg numerical results with this formula. Occurring dis- B() pg(x)dx 42

crepancies indicate the existence of exactly those correla-

tions which had been neglected in the beginning. and consequently the variance of the summed width is
Following [31], we define the width-weighted stick spec-

trum Sah=(B%(1))—(B(1))% (43

, Now, we relate this quantity to the number variac€l) in
(=2 yid(x—e), JPg(X)dXZN @D e following way: | ’ )

Bz(l)=§j) yiy JAzé(x—ei)é(y—ej)dx dy

D dxd
0 otherwise & y.y,fzé(x—ei)ﬁ(y—ej) xdy. (44)

55 yw

Assuming no position-width correlations, one may perform -
the averages in Eq43) separately Pg= 2 V(i) O(X— &),

(B(H)=(y}n(h)), (49) : o
where we apply a random permutatierto the indices of the
and, furthermore, assuming no width-width correlations, onavidths. As Eq.(49) only uses the independence of widths

obtains and levels the synthetic spectrum should obey this equation,
5 5 ) while the true ongpg may not if correlations exist.
(BA(1)) =y Hn())+<y) Figure 6 shows the theoretical curve$ (40) and3.2 (39)

as well as>? for the numerically obtained energy spectrum

XZ < J 25(x—ei)5(y—ej)dx dy>. (46) for three channels and=100. We, furthermore, show
1Fl A 32— (Ay?)l for both the true and the synthetidecorrelatel

It is (n(1))=| because the mean level distance is one. Thgwdth-welghted stick spectra under the same conditions. The

corresponding expression without width weighting is result for the synthetic spectrgm agrees very weII. with that
for the energy spectrum, as it should be according to Eq.

(49). The ES obtained for the true spectrum, on the other

(n%(1))= (n(|)>+2 <L (x—e) d(y—ej)dx dy>

(47) 14

Comparing Egs(46) and(47) one arrives at &N; 12
B =AW D, @y TP

and finally using Eqs(38) and (45) c%;\ga z
Sa)=(Ay?)I+32(1). (49) Ng 4

Here (Ay?) is the variance of the width distribution. In the 2
case that the normalized widthg are Xﬁ distributed, 0

(Ay?)=2/K.

From Eq.(49) we see that we may clearly separate prop-
erties stemming from the correlations in the energy spec- FiG. 6. varianceSZ(l) of the summed width subtracted by
trum, as well as from the width distribution on one hand, and ay?)| for the POE case;( 100). The crosses denote this quantity
correlations between energies and widths or between widthgr the original spectrum which contains all correlations. The
at different energies on the other hand. To achieve this wequares correspond to the synthetic spectrum and the diamonds de-
proceed[31] to create from the true width-weighted spec- note the pure number varian&?. The solid lines show the theo-
trum (41) a synthetic one retical curvesS 3 and33.
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' ' To 4o 40 crease steadily with the coupling parametefcf. Fig. 5.
o o, tst ] (iii) The correlations connected with the widthtere we
~ o * used the generalized measuié [31], calculated from a
= cagt? a9 width-weighted stick spectra. Two additional types of corre-
§|lf w:‘“‘" LI . lations appear, namely, between the position and the width of

o g o

d ”“".P‘??”.“F?"’.ﬂ“."?.u,uu;.“?. = S each resonance and between the widths of different reso-

X
P g

5% *x nances. In the GOE case they appear only in the critical
> region, whereas in the POE case they increase steédily
2r % ] Figs. 6 and 7.
xx ’ Furthermore, we derived an analytic expression for the
4t 1 width distribution of the GOE and POE in the one channel
- ; : : - ' - case at strong couplingef. Fig. 4). This is achieved by re-
0 2 4 6 8 10 12 14 ; . .

I Iatl_ng the width of a trapped state to _the dlstance of.theT two

neighbored levels. In this way, the different width distribu-
FIG. 7. VarianceES(I) of the summed width subtracted by tion of the GOE and POE is explained.
(Ay?)l for the original spectrum, containing all correlations  The results of our investigations show the special role of
(x=100). The diamonds denote the c#se 6, the upright crosses the GOE. Its properties survive the distortion of the system
K=3, the squareX=2, and the crosseK=1. The solid lines by coupling it to the continuum: at large coupling the corre-
again showzg and 3. lations and the width distribution are the same as at low
coupling. In contrast to the GOE, the properties of the POE

hand, differs greatly. This is a clear indication that the specare not restored at the strong coupling strength.
trum in this case presents strong correlations, which must be Realistic systems are often in the critical region where
contrasted to the chaotic case where a similar analysis indeorrelations in the spectrum are induced by the coupling to
cates the absence of correlations. Note however that thée continuum. Under these conditions Swenatrix poles are
agreement oES—(AyZ)I with 32 for 1<5 is only acciden- difficult to find. Nevertheless, they determine the statistical
tal, what can be concluded from the results for differentproperties of the cross section. We will investigate this prob-

numbers of channels in Fig. 7. lem in a forthcoming paper for both the GOE and the POE.
The nature of these correlations is such that the spectrum
becomes more rigid due to the width weightimlisregarding ACKNOWLEDGMENT

the term Ay?)l]. This may be understood from E(32) _ . _
meaning that the width of a trapped resonance is more likely Valuable discussions with G. Soff and V. V. Sokolov are
to be large if the distance between its neighboring levels igratefully acknowledged. The investigations are supported

large, tool' ,~|e,—&,_4|% by DFG (Ro 922/6 and by DAAD.
Furthermore, we expect that for increasing numkeof

channels the effect of the position width and the width-width APPENDIX A: RESONANCE WIDTH

correlations vanishes, because the variance of the width dis- IN THE TWO LEVEL APPROXIMATION

tribution 2K becomes very small. In this case the sum of the N ) ]
normalized widths becomes more and more equal to the Writing Eq. (31) for two neighboring levels, we get
number of levels in the interval considered. This is verified

in Fig. 7. v% N v% o vi N vg _ i
A AT INK: NG
VIl. SUMMARY St s73 Sto 72

We considered the distortion of a regular system by its (A1)

coupling « to the continuum of decay channels. We obtained,,area
results for the following.
(i) The width distribution, as it is altered with increasing
«. In the weak coupling limit for both the GOE and the POE, s
the widths arey?2 distributed when normalized to unit mean. _ Awvpmui A (A2)
Then with increasinge their distributions become broader. 72 v§+v§_ 2"
For the GOE, the widths return to their original distribution
in the strong coupling limit. For the POE, the width distri- Inserting this result into the second equation(at) yields
bution becomes approximatelw% distribution again, but in
contrast to the GOE with a much larger variance as before A2 02 v2 0242
(cf. Fig. 2 and Fig. R 2 7t 4 v 712
(i) The correlations between the positions aloRer this nm (1-12 (1+12 1-7
analysis we used the number variark® For the GOE we
found correlations, as they are typical for the level statisticinally, measuringA in units of the mean level spacing
of a closed system in both the weak and the strong couplind =dgs in the center of the spectrum, ahdin units of the
region. Only in the critical region do the correlations becomemean widthI'=(T",)y according to Eq(23), one arrives at
weaker. The POE starts without correlations. Then they inEq. (32)

=g,— g, is the distance between the levels &is
substituted byE=2(e,+¢&,) +s. Due to the first equation

(A3)
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m2s?
= 4N(v§+u§)(1_72)' (AY
APPENDIX B: WIDTH DISTRIBUTION
The width distribution according to E¢32) is
N _ 2, 2
p(y)=§f dv,dv,e N’z“’l*”z)f dsP(s)
w2s?
5 y—m(l—Tz) . (B1)

Transforming v; and v, into spherical coordinates

r/YNcos¢ and r/{Nsing so that r=sir® p—co ¢

=—C0S 2p, we get

1
p(y)= EJ rdrd¢>e_r2/2f ds F(s)
s _wzszsin22¢ 2
Y 4r? '

It is enough to integratep from O to 7/4 because of the
eightfold symmetry of the integrand. Applying, in addition,
the transformationx=sir? 2¢

( )—ifrdre"z’zflLfds As)
PY)= ™ 0 VX(1—Xx)
WZSZX

X 6
4r?

(B3)

y_

In order to go ahead we consider the two cases GOE and Pe(Y) =

POE separately in the following subsections.

1. GOE case
Here the nearest neighbor distribution reads

aw
Pa(s)=5s e sl (B4)

In order to resolve thé function, we substitute as a func-
tion of y' = 72s?x/(4r?) and usef s(y—y')f(y")dy=1f(y).

This leads to
2 x \Y2 e
dx(—) j ds e,
0 1-x 0

ko

pely)= Fyz

GORIN, DITTES, MULLER, ROTTER, AND SELIGMAN

14 X
Z_y .

ar
a=g

(B5)

The integral over the level spacirgygives 1/(2¢?) and it
remains a last integration, namely,

2 1 X 1/2 2y -2
pely)= ;fo dX( m) (? +X) . (B6)
This may be solved by substituting- x/1—x
(y)= 4 fwdt v b—2y
P a1+ b2 2, B\ m
b+1
(B7)
and integrating by parts. Then
()= 1 (1+b)\¥2 1 2y)‘3’2
Pty w(1+ b)z\ b \/27Ty\ ™
(B8)
2. POE case
Here the nearest neighbor distribution is
Pp(s)=e"". (B9)

In contrast to the GOE case we first substitatestead of
r. It follows that

1 J r2dr e—rzlzjl dx g 2r/myix
m2\ly 0Xy1—x
2 f 2. [*dz e ** 2r
=—— | drr?e’ ’Zf . a=—y.
72y 1 yz°—1 77\/;

The last integral represents the modified Bessel fun¢2@h

2\y

—Ir
v

2

dr r2e~r*%k (
] :

This integral can be found if26]

Pe(Yy) = ) (B10)

1 (y/72) 2
pp(y)=4—er W_; o 2y/79). (B11)
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